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Abstract  

3D cell cultures are rapidly becoming the method of choice for the physiologically 

relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. 

Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to 

date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell 

culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts 

a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at 

least in part, the underlying gene expression profile and protein expression patterns of the cell 

lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell 

lines originating from metastases. We further demonstrate that consistent differences in genes 

encoding signal transduction proteins emerge when even tumor cells are cultured in 3D 

microenvironments. 
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Introduction 

Mechanistic studies of human cancer are largely reliant on ex vivo culture of established 

cell lines. The overwhelming majority of these studies are performed using immortalized cell 

lines cultured on two-dimensional plastic substrata. Non-malignant mammary epithelial cells, as 

well as other differentiated cell types, rapidly lose many aspects of the differentiated state upon 

dissociation and culture on plastic substrata (Bissell D.M. et al. 1973; Bissell D.M. and Tilles 

1971; Bissell, 1981; Emerman and Pitelka, 1977). Over many decades, we and others have 

proposed (Bissell et al., 1982) and demonstrated (Barcellos-Hoff et al., 1989; Roskelley et al., 

1995; Schmidhauser et al., 1992; Streuli et al., 1991; Streuli and Bissell, 1990; Streuli et al., 

1995) that signals from the extracellular matrix play crucial roles in the establishment and 

maintenance of tissue specificity of non-malignant mammary cells. We have shown that 

functional and morphological differentiation can be largely restored by growing cells in a 

reconstituted basement membrane which provides in culture the crucial cues from extracellular 

matrix proteins to which these cells respond in vivo (Barcellos-Hoff et al., 1989; Li et al., 1987; 

Petersen et al., 1992) and these culture techniques are now being used to study differentiated 
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function in several tissues (reviewed in Kleinman and Martin, 2005; Schmeichel and Bissell, 

2003). 

 

We extended these studies to malignant human breast cells and reported in 1992 that non-

malignant and malignant cells can be distinguished rapidly and reliably when grown in 3D 

laminin-rich extracellular matrix (lrECM) cultures (Petersen et al., 1992). Non-malignant cells 

(e.g. HMT-3522 S1) undergo a small number of rounds of cell division, after which they 

organize into polarized, growth-arrested colonies with many of the morphological features of 

mammary acini (Petersen et al., 1992). This ability to correctly sense the cues from the basement 

membrane and organize into acini is shared by the other non-malignant breast epithelial cells 

which we have studied: MCF-10A (Muthuswamy et al., 2001; Petersen et al., 1992) and 184 

(Fournier et al., 2006). In contrast, malignant cells – both established cell lines and cells from 

primary tumors – adopt a variety of colony morphologies but share some common aspects – loss 

of tissue polarity, a disorganized architecture and a failure to arrest growth (Park et al., 2006; 

Petersen et al., 1992).  

Crucially, our studies have shown that signal transduction pathways in non-malignant 

cells are integrated in 3D lrECM cultures in ways not observed when cells are cultured as 

monolayers. Initially, we reported that the expression and activity of β1-integrin and EGFR are 

reciprocally downregulated in breast cancer cells treated with various signaling inhibitors, but 

only when cultured on 3D substrata (Wang et al., 1998). In another example, T4-2 cells treated 

with PI3-Kinase inhibitors undergo a reversion of the malignant phenotype in 3D culture, with 

downregulation of EGFR, β1-integrin and upregulation of PTEN – changes which are only seen 

in cells grown on lrECM – while proximal markers of drug efficacy (e.g. pAkt and pGSK3β) 

responded similarly in cells grown on both substrata (Liu et al., 2004). We have also shown 

crucial differences in apoptotic sensitivity in response to chemotherapeutic agents for non-

malignant and malignant breast cell lines in 2D and 3D culture (Weaver et al., 2002), further 

underscoring the relative value of 3D models over more conventional approaches. More recently 

we have defined a gene expression signature from acini formed from non-malignant breast 

epithelial cells in 3D lrECM and showed that human breast tumors sharing this pattern had a 

significantly better prognosis (Fournier et al., 2006). These 3D culture models also have played a 

key role in our validation of two new molecular targets in breast cancer, β1-integrin (Park et al., 
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2006; Weaver et al., 1997) and TACE/ADAM17 (Kenny and Bissell, 2007). These data have 

raised the question of the extent to which monolayer cultures may be failing to recapitulate 

signaling in vivo (Bissell et al., 2003; Bissell et al., 1999).  

Whereas there are dramatic morphological (and hence biochemical) differences between 

normal and malignant cells in 2D and 3D (Bissell et al., 2005; Petersen et al., 1992), the cancer 

cells are much less sensitive to environmental perturbations. Nevertheless it is becoming clear 

that even tumor cells respond to chemotherapy and other factors differently in different 

microenvironments. Much is known about the gene expression patterns of different breast cancer 

cell lines on tissue culture plastic (Neve et al., 2006; Perou et al., 1999), yet a comprehensive 

analysis of the phenotype of a large panel of breast cancer cell lines in 3D culture has been 

lacking to date. We asked whether we could detect differences in morphology of the breast 

cancer cell lines in 3D and whether these differences could be correlated with aspects of gene 

expression. We focused on a large panel of breast cancer cell lines which largely recapitulate the 

diversity of gene expression patterns and mutational and genomic aberrations found in breast 

tumors in vivo (Chin et al., 2006; Neve et al., 2006). Here, we report the morphological 

phenotype of 25 of these breast cell lines grown in 2D and 3D cultures, and their gene expression 

profiles under these same conditions. These data reveal that breast cancer cell lines generally 

form colonies with one of four distinctive morphologies and that culture in a 3D 

microenvironment results in significant and reproducible gene expression changes, even for 

breast cancer cell lines.  

 

Results 

Twenty-five established epithelial cell lines originally derived from reduction 

mammoplasty or breast tumors were cultured in a three-dimensional (3D) culture assay in which 

cells are seeded singly on top of a thin gel comprised of laminin-rich extracellular matrix (Lee et 

al., 2007; Park et al., 2006), overlaid with medium containing a small amount of additional 

lrECM and analyzed after 4 days. In this study we compare 25 cell lines using the following 

endpoints: 3D morphology, proliferation index at this time point, and expression level and 

activity of several key signaling proteins. Additionally, we performed Affymetrix gene 

expression analysis of cells cultured on both substrata.  

 



Kenny, Lee et al. 

 5 

Cell lines exhibit distinct morphologies when cultured in the 3D lrECM on the ‘on-top’ 

assay.  

Whereas the panel of cell lines adopted largely non-distinct morphologies when cultured 

as monolayers, dramatic differences emerged when grown on a 3D lrECM substratum. The 3D 

morphologies of these cell lines were characterized by phase contrast microscopy and 

localization of F-actin of colonies at the culture endpoint. We classified the cell lines into four 

distinct morphological groups referred to as: Round, Mass, Grape-like and Stellate. 

Representative examples of each class are shown in Figure 1, and the morphology of each of the 

cell lines in the panel is shown in Figure 2. The Round cell class include HCC1500, MCF-12A, 

MDA-MB-415, MPE-600, and S1; these form round colonies on top of gels as viewed by phase 

contrast microscopy and have nuclei that are organized in a regular manner around the center of 

the colony as assessed by confocal microscopy. The Mass class, BT-474, BT-483, HCC70, 

HCC1569, MCF-7, T4-2 and T-47D form colonies which may also have round colony outlines 

by phase contrast microscopy, but are distinguished from the Round morphological grouping by 

their disorganized nuclei and filled colony centers (colonies of the Round morphology 

occasionally form lumens, although the frequency varies greatly between the cell lines). The 

Grape-like class, AU565, CAMA-1, MDA-MB-361, MDA-MB-453, MDA-MB-468, SK-BR-3, 

UACC-812, ZR-75-1 and ZR-75-B, form colonies with poor cell-cell contacts and are 

distinguished by their grape-like appearance. This phenotype is readily apparent by phase 

contrast microscopy in most of the cell lines grouped in this morphology but is particularly 

obvious when F-actin localization is visualized using phalloidin staining. Although by phase 

contrast microscopy, UACC-812 and ZR-75-B appear mass-like, F-actin staining of these 

colonies clearly shows a lack of robust cell-cell adhesion and they were therefore classed in the 

Grape-like morphology. Lastly, the Stellate class, BT-549, Hs578T, MDA-MB-231 and MDA-

MB-436, are distinguished by their invasive phenotype in 3D culture, with stellate projections 

that often bridge multiple cell colonies.  

 

Proliferation Analysis 

We determined the proliferation index of these twenty-five cell lines at the endpoint of 

the 3D lrECM assay by indirect immunofluorescence against Ki67 antigen (Table 1). The 

proportion of nuclei staining positive for Ki67 at this time point (Table 1) did not show any 
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significant correlation to colony morphology (ANOVA, P = 0.92), Sorlie/Perou tumor class 

(ANOVA, P = 0.30), ER status (T-test, P = 0.23) or whether the cell line was derived from a 

primary tumor or a metastasis (T-test, P = 0.35).  

 

Expression of signaling proteins 

Protein lysates were isolated from cell colonies for western blotting against proteins 

involved in key signaling processes and in cell-cell interactions (Figure 3). Many of the known 

major aspects of protein expression in the panel of cell lines are reflected in this analysis. MDA-

MB-468 had the highest levels of EGFR, consistent with their reported amplification of this gene 

(Filmus et al., 1985). This cell line also had the highest levels of EGFR activity, the second 

highest being found in T4-2 cells, in which this gene is also amplified (Briand et al., 1996). 

Two immunoreactive bands were seen for β1-integrin; the lower and upper bands have been 

reported to correspond to the partially and fully glycosylated forms, respectively (Bellis, 2004). 

Interestingly, the protein recognized in the upper band was more highly expressed in 6 cell lines, 

while the variant of lower molecular weight was the predominant isoform in 14 of the cell lines. 

The upper band was most common in the Stellate cells. 

 Several cell lines had significant levels of phosphorylated Akt, including HCC1569, 

CAMA-1, BT-549, ZR-75-1 and MDA-MB-468, all of which have no functional PTEN. Other 

lines, which have activating mutations in the gene encoding PI3-Kinase have somewhat lower, 

but still substantial levels of p-Akt (BT-474, MCF-7 and T-47D) suggesting that PTEN loss may 

have a more potent effect on activation of Akt than PIK3CA activation. MDA-MB-415 also 

expressed high levels of pAkt, although to our knowledge defects in this pathway in this cell line 

have not yet been reported. 

 Most cell lines had similar levels of β-catenin, with the exception of some of the E-

Cadherin negative cells such as SK-BR-3 and AU565. This is consistent with the role of E-

cadherin in stabilizing a pool of β-catenin in adherens junctions, with the loss of E-Cadherin 

leading to the rapid turnover of cytosolic β-catenin in these cell lines which express the 

CTNNB1 gene but have a high activity of the β-catenin turnover pathway (Orford et al., 1997). 

Each of the Stellate cell lines lacked E-cadherin, and the Grape-like cell lines generally had 

lower levels than the other two groups, most probably reflecting the more limited cell-cell 

interactions observed in colonies with this morphology. In many cases, E-cadherin negativity 
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was consistent with the reported deletions in this panel of cell lines (Hiraguri et al., 1998). Two 

cell lines, CAMA-1 and 600-MPE, were positive for E-cadherin, but the immunoreactive bands 

were of a slightly different size to the 120 KDa band found in the other cell lines. 600-MPE has 

been reported to have a deletion of exon 9, while CAMA-1 has a mutation in the splice acceptor 

site of exon 12 (van de Wetering et al., 2001). 

The highest levels of ErbB2 were found in cell lines of the Grape-like and Mass 

categories. Cells of the Round category expressed moderate levels of ErbB2, while this protein 

was not detected in Stellate cells. AU565, BT-474, HCC1569, SK-BR-3, MDA-MB-361, MDA-

MB-453, UACC-812 have been reported to have amplified this gene (Lacroix and Leclercq, 

2004 and references therein; Neve et al., 2006). Of the remaining cell lines with high levels of 

ErbB2, BT-483 and ZR-75-1 are not amplified at the ErbB2 locus (Kallioniemi et al., 1992; 

Kraus et al., 1987), however both are known to overexpress ErbB2 (Gazdar et al., 1998; Kraus et 

al., 1987). 

 

Gene expression profiling of breast epithelial cells grown in two and three dimensions 

We determined the gene expression profile of 24 of the 25 cell lines in 2D and 3D 

cultures. During the period in which these studies were performed, the array platform being 

utilized was upgraded from the Affymetrix high-density oligonucleotide array cartridge system 

to the newer, Affymetrix high throughput array (HTA) GeneChip system. To ensure the validity 

of our interplatform comparison (for a detailed description, please see Experimental Procedures), 

we analyzed a number of samples on both platforms. These samples clustered together following 

the cross-platform normalization, indicating that the approach is valid and robust. In total, 89 

samples from 24 different cell lines were analyzed, 47 in 2D and 42 in 3D. Replicates were not 

averaged and are presented as individual samples to provide additional confidence in the 

robustness of our inter-platform comparison and clustering approach. These data have been 

deposited in the Array Express database (http://www.ebi.ac.uk/arrayexpress/). Figure 4 

represents unsupervised hierarchical clustering of the 89 samples. 

In agreement with the earlier report from one of our laboratories (Neve et al., 2006), the 

cell lines grouped into two broad clusters which have similarities to the Luminal and Basal 

subclasses described by Sorlie, Perou and co-workers in human breast cancer cases (Perou et al., 

1999). As described by Neve et al, the Basal cell lines could be further subdivided into two 
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groups, Basal A and Basal B. The cell lines of the HMT-3522 series (non-malignant S1 and 

malignant T4-2) cluster with the non-malignant MCF-12A cell line in the Basal B subclass. 

Given that the malignant T4-2 cells were derived from S1 cells by selection in culture (rather 

than over many years of mutation and evolution under the complex selective pressures in a 

cancer patient), it is perhaps unsurprising, but also intriguing, that it clusters with those of a more 

normal phenotype. The HCC1500 cell line is an outlier of this group, distinct from the other cells 

with a basal phenotype. In 3D culture, this cell line (although tumor-derived) still retains some 

aspects of the normal mammary gland morphology and has been occasionally observed to form 

colonies with nuclear organization around a central lumen with apical F-actin localization (data 

not shown).  

While the Basal/Luminal delineation seems to be the strongest driver of the clustering 

pattern, cell lines of similar morphologies within these sub-types frequently clustered together 

suggesting that the gene expression pattern of the cells is a strong determinant of colony 

morphology (Figure 4). All four of the Stellate cell lines are more similar to each other than to 

cell lines of any other morphology, while all of the Round cell lines of the Basal subtype 

clustered together. Among the Luminal subtype, five of the seven Grape-Like cell lines cluster 

together and there is a sub-cluster of two Round cell lines in a larger cluster of mostly Mass cell 

lines.  

 

2D v 3D expression comparison.  

From the hierarchical clustering, it is clear that the 2D and 3D expression profiles of the 

individual cell lines cluster together, independently of the substratum on which they were 

cultured. These data indicate that 3D culture did not effect a consistent and widespread change in 

gene expression causing each cell line to adopt a substantially different and common program of 

gene expression. Nevertheless, it is also clear that the 3D microenvironment did effect significant 

changes in the gene expression profiles of these cancer cell lines. 

To identify those genes which respond consistently to the 3D culture microenvironment 

in all of the cell lines, we averaged all of the replicates for each cell line under each culture 

condition and tested whether there was a set of genes which distinguished cell lines grown in 2D 

versus those grown in 3D (ANOVA, cutoff P < 0.00025). We identified 96 Affymetrix probes 

which were strongly up/downregulated consistently across the majority of the cell lines (Figure 



Kenny, Lee et al. 

 9 

5). These data indicate that, although cell line identity and the luminal/basal phenotype make a 

strong contribution to the gene expression profiles, the culture microenvironment and substratum 

also exert significant effects. 

Of these 96 Affymetrix probes, 41 corresponded to genes with annotated functions. We 

used Gene Ontology annotations (Ashburner et al., 2000) to determine whether particular 

molecular functions were statistically overrepresented in this set. These genes, and their Gene 

Ontology classifications are shown in Figure 6. Of the eight classifications found, one – “signal 

transducer activity”– was statistically significantly overrepresented in the set of genes which 

differ between 2D and 3D culture (P-value = 0.0201). The “enzyme regulator activity” class 

almost reached statistical significance (P-value = 0.0509). Given that many signal transduction 

molecules are regulated at the level of phosphorylation and other protein modifications rather 

than at transcriptional levels, we expect that the actual changes at the level of cellular signaling 

would be even more striking than the gene expression arrays indicate. These data provide 

additional support for our contention that regulation of signal transduction is substantially 

different in cells cultured on basement membrane gels (Liu et al., 2004; Wang et al., 1998; 

Weaver et al., 2002; Weaver et al., 1997). 

 

Discussion 

The utility of the 3D culture models to explore aspects of the normal and malignant 

phenotypes in culture has now been widely recognized and many workers have adopted these 

approaches to study cancers of the breast and of other tissues (reviewed in Schmeichel and 

Bissell, 2003). One recent fruitful avenue has been to take non-malignant cells, e.g. S1 or MCF-

10A which form acini in 3D cultures, and specifically overexpress or ablate expression of 

potentially cancer-relevant genes and analyze the effects of the manipulation on the ability of 

these cells to execute acinar morphogenesis (Debnath et al., 2002; Debnath et al., 2003; 

Gunawardane et al., 2005; Irie et al., 2005; Isakoff et al., 2005; Muthuswamy et al., 2001; 

Overholtzer et al., 2006; Reginato et al., 2003; Wrobel et al., 2004; Zhan et al., 2006). Many of 

these reports have shown that the effects of activation of oncogenes or inactivation of tumor-

suppressor genes are profoundly different in cells cultured in different microenvironments. 

Setting the “oncogenic lesion” a priori has allowed the dissection of the potential contribution of 

individual components to various aspects of the malignant phenotype and has provided a wealth 
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of useful information. In these systems it is possible to examine one, two or perhaps three factors 

acting in concert, but the technical difficulties with these experiments, and the intrinsic gene 

selection bias in experimental design resulting from our incomplete knowledge of cancer cell 

biology and of the endogenous aberrations in the host cells, impose a significant constraint on the 

utility of this widely used approach.  

Unlike such models developed in tissue culture, the cell lines in our panel were selected 

for the ability to proliferate to form clinically relevant and often invasive and metastatic tumors 

in women. The exposure to these strong evolutionary pressures in vivo, promoting such 

phenotypes as angiogenic potential, resistance to growth inhibitory cues and ability to survive in 

circulation and at sites distant from the primary tumor – may be more likely to represent relevant 

cancer models than those constructed in the laboratory. This panel recapitulates, in large part, the 

full spectrum of interacting mutations and aberrations found in human breast cancer cases (Neve 

et al., 2006). These include those alterations of which we already have a good understanding and 

many alterations – “unknown unknowns” of which we are still ignorant. In this way, our 

experimental approaches are not biased strongly by prior assumptions, and the sample set is 

sufficiently diverse to allow us and other workers to choose individual cell lines based on the 

data provided here to test specific hypotheses. More importantly, perhaps, we should consider 

these assays and paradigms as we explore ways of testing and selecting current and future 

chemotherapeutics. 

 

We had previously reported, in a much smaller sample set, that breast cancer cell lines 

adopt a variety of morphologies in 3D culture and share a number of common properties which 

distinguish them from non-malignant breast epithelial cells – specifically, a failure to arrest 

growth and form organized, polarized colonies in response to cues from the extracellular matrix. 

Here we not only expand on the previous work, but show the plasticity and the diversity of the 

malignant cells themselves when grown on top of 3D gels. We describe four distinct 

morphological classes which show correlations with the underlying gene and protein expression 

patterns. Interestingly, eight of the nine Grape-Like cells were isolated from tumor metastases. In 

general, these cells formed less closely associated colonies with reduced cell-cell adhesion 

compared to cell lines of the other morphologies. This may reflect, in part, the acquisition of the 
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ability to break away from their neighbors in the primary tumor over the course of their evolution 

as they acquired the ability to metastasize.  

 

We previously reported that breast cancer cell lines belonging to the Basal B category 

were much more invasive by Boyden chamber assays than those belonging to the Basal A and 

Luminal categories (Neve et al., 2006). The two outliers in this correlation were MCF-10A and 

MCF-12A, both Basal B but highly un-invasive. Interestingly, both of these cell lines fall under 

the Round class by 3D morphology (Muthuswamy et al., 2001 and Figure 2). Of the other eight 

Basal B cell lines which are highly invasive, six cell lines are of the Stellate 3D morphology: 

three are described in full here (BT-549, Hs578T, MDA-MB-231) and we have also 

characterized the other three (HBL-100, MDA-MB-157, SUM 159PT) as Stellate; data not 

shown). MDA-MB-436 has been shown to be invasive by similar in vitro assays (Albini et al., 

1987). Thus far, all of the cell lines we have characterized as Stellate have been shown to be 

invasive in commonly used in vitro assays, suggesting the utility of the 3D colony morphology 

as a functional assay for invasive potential.  

 

In the model we have studied most intensively, malignant T4-2 of the HMT3522 series, 

we have used the 3D culture assay to identify a number of signaling nodes which regulate 

proliferation and architecture of the cells in response to a number of signaling inhibitors (for 

review see Bissell et al., 2003). In this assay, the disorganized, apolar phenotype of the T4-2 

cells can be ‘reverted’ to a phenotype much more closely approximating that of non-malignant 

breast acini (and the reverted structures show a profound reduction in tumorigenicity in vivo). 

We determined that the level of signaling downstream of both EGFR and β1-integrin are critical 

for the maintenance or reversion of the malignant phenotype in this cell line (Wang et al., 1998; 

Weaver et al., 1997) and have made substantial inroads into understanding how the key signals 

may be elicited (Kenny and Bissell, 2007) and transduced (Liu et al., 2004). We expanded this 

analysis to a small number of other breast cancer cell lines in 3D cultures (MDA-MB-231, MCF-

7 and Hs578T) and demonstrated the feasibility of using combinatorial approaches to identify the 

key deregulated pathways in these cell lines (Wang et al., 2002). Large scale studies of tumor 

cells in this culture context offers the possibility of rapidly identifying the key molecular 

vulnerabilities in ways not requiring intensive gene expression or proteomic analyses. The 
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demonstration by Nevins and co-workers that gene expression profiles can be used to predict 

sensitivity and resistance to different chemotherapeutic agents (Bild et al., 2006; Potti et al., 

2006) is exciting and could be used to shortlist compounds for testing in this assay. Since we 

have shown that resistance to a number of chemotherapeutic agents are dramatically increased by 

tissue (acinar) polarity in 3D cultures, it would be interesting to explore if signatures from 3D 

models are better at predicting drug sensitivity in vivo than profiles derived from cells cultured 

on 2D plastic substrata.  

 

In addition to providing important physical and biochemical cues to adhesion receptors, 

the gelatinous extracellular matrices provide significantly more pliable microenvironments than 

tissue culture plastic and are thus, in these very important respects, considerably closer to the 

microenvironments within which cells exist in vivo. We and others have repeatedly demonstrated 

that this environment allows cells to self-organize transcriptionally (Schmidhauser et al., 1992; 

Xu et al., 2007) architecturally (Petersen et al., 1992; Roskelley et al., 1994)and at the level of 

nuclear organization (Lelievre et al., 1998; Maniotis et al., 2005)to express differentiated 

functions lost in cells grown on tissue culture plastic. We have provided much data suggesting 

that signal transduction is integrated in cells grown on laminin-containing gels in ways which are 

fundamentally different from cells grown on plastic. That the differentiated state of so many non-

malignant cell types is restored ex vivo under the 3D conditions we have defined argues that the 

signaling events observed are significantly closer to the cognate events in vivo. These concepts 

are now supported further by the systematic differences observed in 2D versus 3D in the 

expression of genes encoding signaling proteins in malignant cells. The data support our 

contention that even malignant cells are plastic and dependent on their microenvironmental 

signals for survival, growth and metastasis (Bissell and Radisky, 2001). This study, reporting the 

initial characterization of the growth kinetics, morphology and gene expression patterns of this 

panel of cell lines in physiologically relevant culture substrata, represents an important initial 

step to realizing the full potential of thinking in three dimensions.  

 

 

Experimental Procedures 

Cell culture 
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HMT-3522 S1 (S1) and HMT-3522 T4-2 (T4-2) mammary epithelial cells were 

maintained on tissue culture plastic as previously described (Briand et al., 1996; Briand et al., 

1987; Petersen et al., 1992; Weaver et al., 1997). The following human breast cell lines were 

maintained on tissue culture plastic in the following manners: CAMA-1, Hs578T, MCF-7, 

MDA-MB-231, MDA-MB-361, MDA-MB-415, MDA-MB-436, MDA-MB-453, MDA-MB-

468, MPE-600, SK-BR-3, UACC-812 were propagated in DMEM/H-21 (Invitrogen) with 10% 

fetal bovine serum (Gemini); AU565, BT-474, BT-483, BT-549, HCC70, HCC1500, HCC1569, 

T-47D, ZR-75-1, ZR-75-B were propagated in RPMI 1640 (Invitrogen) with 10% fetal bovine 

serum; and MCF-12A was propagated in DMEM/F-12 (Invitrogen) with 10 ng/ml insulin, 100 

ng/ml cholera toxin, 500 ng/ml hydrocortisone, 20 ng/ml EGF (Sigma), and 5% fetal bovine 

serum. Three-dimensional laminin-rich extracellular matrix (3D lrECM) on-top cultures (Lee et 

al., 2007) were prepared by trypsinization of cells from tissue culture plastic, seeding of single 

cells on top of a thin gel of Engelbreth-Holm-Swarm tumor extract (Matrigel: BD Biosciences; 

Cultrex BME: Trevigen), and addition of medium containing 5% EHS. Cell lines with Round 3D 

morphology were seeded at a density of 3.1 x 104 cells per cm2; cell lines with Stellate 3D 

morphology were seeded at 1.6 x 104 cells per cm2; all other cell lines were seeded at 2.1 x 104 

cells per cm2. All 3D lrECM cell cultures were maintained in H14 medium with 1% fetal bovine 

serum, with the exception of S1 and T4-2 which were maintained in their propagation medium, 

for 4 days with media change every 2 days. 

Expression analysis 

Colonies were isolated from 3D cultures by dissolution in PBS/EDTA as previously 

described (Lee et al., 2007). Purified total cellular RNA was extracted using RNEasy mini kit 

with on-column DNase digestion (Qiagen). RNA was quantified by measuring optical density at 

A260 and quality was verified by agarose gel electrophoresis. Affymetrix microarray analysis 

was performed using either the Affymetrix high density oligonucleotide array human HG-

U133A chip or for the Affymetrix High Throughput Array (HTA) GeneChip system, in which 

HG-U133A chips are mounted on pegs arranged in a 96 well format. Data processing. A multi-

step process was used in order to be able to perform a robust comparison of expression data 

generated at different times on two separate array platforms. Robust multi-array analysis (RMA) 

(Irizarry et al., 2003) was performed separately on data generated on both platforms. The 

datasets from each platform were then row-centered separately by subtracting a constant from all 
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probesets across samples, such that the mean of each probeset equaled zero. The row-centered 

data sets were then combined and row-centered together. These data have been deposited in the 

Array Express database (http://www.ebi.ac.uk/arrayexpress/). 

 

Immunofluorescence and image acquisition 

Immunofluorescence assays were performed as previously described (Lee et al., 2007). In 

brief, cells were either isolated from 3D cultures and fixed onto glass slides with 4% 

paraformaldehyde or 1:1 methanol:acetone or fixed directly in culture with 4% 

paraformaldehyde. Cells were blocked and stained with either fluorescein-labeled phalloidin 

(Molecular Probes) diluted 1:500 or anti-Ki67 antigen (Vector Laboratories) diluted 1:500 

followed by Texas Red-labeled secondary antibody. Nuclei were counterstained with 

diaminophenylindole (DAPI; Sigma). Slides were mounted with VECTASHIELD Hardset 

Mounting Medium (Vector Laboratories). 

Proliferation index was assessed by quantification of proportion of cells positive for Ki67 

antigen. The number of nuclei positive for Ki67 antigen was scored by eye and divided by the 

total number of nuclei. The mean number of total nuclei counted per cell line was 441, with a 

minimum of 119. 

Confocal analysis was performed using either a Zeiss LSM 410 laser scanning confocal 

system or a Solamere Technology Group spinning disk confocal system comprised of a Zeiss 

Axiovert 200M inverted microscope, Yokagawa CSU10 confocal scan head and Stanford 

Photonics XR/Mega-10 ICCD camera, run by QED InVivo software (Media Cybernetics). 

Images were analysed using ImageJ (National Institutes of Health) and Adobe Photoshop. 

 

Western blotting 

Cells were isolated from 3D cultures as described above, lysed in 2% SDS in PBS 

containing 1 mM sodium orthovanadate, 1.5 mM sodium fluoride (Sigma), and 1X protease 

inhibitor cocktail set I (Calbiochem), and homogenized by sonication. Equal amounts of protein 

were fractionated by SDS-PAGE, transferred to nitrocellulose membranes and probed with 

antibodies against the following proteins: Akt, E-cadherin, β-catenin, EGFR, activated EGFR, 

β1-integrin (BD Biosciences), phosphorylated S473 Akt, ErbB2, MAPK, phosphorylated T202 

and T204 MAPK (Cell Signaling Technology). β-actin (Sigma) was used as a loading control. 
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Blots were developed with SuperSignal West Femto Maximum Sensitivity Substrate (Pierce) and 

visualized with a FluorChem 8900 imager (Alpha Innotech). Lysates from S1 and T4-2 cells 

were run on all separate blots in order for signals from cell lines run at different times to be semi-

quantitatively compared. Normalization across separate blots was performed in Adobe 

Photoshop. First, the sizes of all protein bands were normalized across blots by measuring the 

width of all T4-2 protein bands with the Ruler tool and resizing blots to equalize the widths 

while maintaining a fixed aspect ratio. Next, normalization of signal of each protein blotted was 

performed by using the Eyedropper tool to measure and equalize maximum band intensities of 

either S1 or T4-2 across all blots. Signal from T4-2 (being generally stronger than S1) was used 

for normalization except for phosphorylated MAPK and phosphorylated Akt. For normalization 

of saturated β1-integrin and β-actin signal, the size of the saturated bands was used for 

normalization. After normalization was complete, protein bands were aligned and all layers were 

flattened.  
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Table 1. Breast cell line characteristics. 

3D 
morphology Cell line ER PgR ERBB2 

amp. 
Mutational 
status 

Tumor 
type 

Tissue 
source Tumorigenicity Tumor 

classification 
Proliferation 
index (3D) 

Round HCC1500 + +  N/A DC P Unknown Basal B 85.9% 

,Round MCF-12A - -  N/A F P No Basal B 9.42% 
Round MDA-MB-415 + -  TP53 AC M (PE) No Luminal 6.02% 

Round MPE-600a + -  N/A IDC Unknowna Unknown Luminal 35.3% 
Round S1b - -  N/A F P No Basal B 31% 

Mass BT-474 + + + PIK3CA IDC P Yes Luminal 19.2% 
Mass BT-483 + +  N/A PIDC P Yes Luminal 25% 

Mass HCC70 - -  N/A DC P Unknown Basal A 6.82% 
Mass HCC1569 - -  PTEN, TP53 MC P Unknown Basal A 43.1% 

Mass MCF-7 + +  CDKN2A, 
PIK3CA IDC M (PE) Yes Luminal 56.7% 

Mass T4-2b - -  TP53e F P Yes Basal B 61.6% 

Mass T-47D + +  PIK3CA, 
TP53 IDC M (PE) Yes Luminal 53.4% 

Grape-like AU565c - - + None AC M (PE) Unknown Luminal 53.36% 
Grape-like CAMA-1 + +  PTEN, VHL AC M (PE) Yes Luminal 53.4% 

Grape-like MDA-MB-361 + + + None AC M (Br) Yes Luminal 4.43% 

Grape-like MDA-MB-453 - - + CDH1, 
PIK3CA AC M (PE) No Luminal 72.5% 

Grape-like MDA-MB-468 - -  
MADH4, 
PTEN, RB1, 
TP53 

AC M (PE) Yes Basal A 82.4% 

Grape-like SK-BR-3c - - + N/A AC M (PE) Yes Luminal 35.2% 
Grape-like UACC-812 + - + None IDC P Unknown Luminal 3.95% 

Grape-like ZR-75-1d + +  N/A IDC M (As) Yes Luminal 5.88% 
Grape-like ZR-75-Bd + +  N/A IDC M (As) Unknown Luminal 22.1% 

Stellate BT-549 - -  RB1, TP53 PIDC P Yes Basal B 23% 

Stellate Hs578T - -  CDKN2A, 
HRAS, TP53 CS P Yes Basal B 44.2% 

Stellate MDA-MB-231 - -  
BRAF, 
CDKN2A, 
KRAS, TP53 

AC M (PE) Yes Basal B 49.5% 

Stellate MDA-MB-436 - -  N/A AC M (PE) Yes Basal B 66.5% 

Relevant characteristics of non-malignant and malignant breast cell lines used are organized by 3D morphology and 
summarized here. Estrogen receptor (ER), progesterone receptor (PgR), ERBB2 amplification status (ERBB2 amp.), 
primary tumor type, tissue source, experimental tumorigenicity, defined as the ability of a cell line to form tumors in 
an immunecompromised mouse model, and tumor classification, based on previously published data (Lacroix and 
Leclercq, 2004; Neve et al., 2006), are indicated. Data on mutations were extracted from the Cancer Genome Project 
at the Sanger Institute (http://www.sanger.ac.uk/genetics/CGP/CellLines/) for all available cell lines unless 
otherwise indicated. Cell lines for which mutational status was not available are indicated as N/A. Genes tested in all 
cell lines: APC, BRAF, CDH1, CDKN2A, CTNNB1, EGFR, HRAS, KRAS, MADH4, NRAS, PIK3CA, PTEN, 
RB1, STK11, TP53, VHL; additional genes tested in BT-549, Hs578T, MCF-7, MDA-MB-231 and T-47D: 
BRCA1, BRCA2, ERBB2, FLT3, PDGFRA. The proliferation index of cell lines cultured for 4 days in 3D defined 
as the percentage of nuclei staining positive for Ki67 antigen is also shown.  
Abbreviations: AC, adeno carcinoma; As, ascites; Br, brain; CS, carcinosarcoma; DC, ductal carcinoma; F, 
fibrocystic disease; IDC, invasive ductal carcinoma; M, metastasis; MC, metaplastic carcinoma; P, primary; PE, 
pleural effusion; PIDC, papillary invasive ductal carcinoma. 
a MPE-600 was developed by Vysis International, Inc. 
b T4-2 is a tumorigenic cell line derived from S1 in vitro. 
c AU565 and SK-BR-3 were derived from the same patient. 
d ZR-75-B was cloned from ZR-75-1.  
e T4-2 is not included in the Sanger Institute Cancer Genome Project, but a TP53 mutation in the cell line was 
reported in (Moyret et al., 1994). 
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Figure Legends 

Figure 1. Breast cell line colony morphologies in 3D culture fall into four distinct groups. A 

panel of twenty-five breast cell lines were cultured in three-dimensions and grouped into four 

distinct morphologies. A schematic and key descriptors of each morphology is shown in addition 

to phase contrast and F-actin and nuclear fluorescence images of representative cell lines of each 

morphology: for Round, S1 is shown; Mass, BT-474; Grape-like, SK-BR-3; and Stellate, MDA-

MB-231. Scale bars: phase contrast, 50 µm; fluorescence, 20 µm. 

 

Figure 2. Morphologies of breast cell lines cultured in two- and three-dimensions.  

Phase contrast images of the complete panel of 25 breast cell lines cultured on tissue culture 

plastic (top panel) and in the 3D lrECM assay (middle panel) are shown grouped by 3D 

morphological classification: Round, Mass, Grape-like and Stellate. 3D cultures were stained for 

F-actin and nuclei were counterstained with DAPI. Optical sections of representative colonies 

are shown for all cell lines (bottom panel) with the exception of MDA-MB-468 for which a Z 

projection with maximum intensity projection (ImageJ) is shown (because of the high degree of 

dimensionality of the colonies generated by this cell line, optical sections appear to show single 

cells not evidently part of the same colony). Scale bars: top panel, 100 µm; middle panel, 50 µm; 

bottom panel, 20 µm.  

 

Figure 3. Western blot analysis of breast cell lines cultured in 3D. Western blot analysis of 

the indicated proteins is shown. Equal amounts of protein were loaded per lane, and lysates S1 

and T4-2 were run on all separate blots as to control for equal loading and exposure time. Signal 

from control cell lines were semi-quantitatively normalized across blots using S1 or T4-2 signal 

for each protein in Adobe Photoshop. Normalized protein profiles for each cell line were then 

aligned and grouped by morphology in this composite figure (see Experimental Procedures for 

additional detail).  

 

Figure 4. Gene expression profiling of breast cell lines grown in two and three dimensions. 

Unsupervised hierarchical clustering of 89 samples representing 24 non-malignant and malignant 

breast cell lines cultured on either tissue culture plastic (2D) or Matrigel (3D). Tree branches are 
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colored to indicate cell line identity (see key on bottom of figure). Also colored in the key are the 

morphological group and the tumor classification to which each cell line belongs. 

 

Figure 5. Genes which distinguish 2D and 3D culture conditions. 

All replicates were averaged so that each condition represents one cell in either 2D or 3D culture. 

The 22215 Affymetrix probes were tested for association with the parameter, Dimension, using a 

cutoff of P < 0.00025, corrected for multiple comparisons using the Benjamini and Hochberg 

test. 96 probes significantly distinguished the expression profiles of cells grown on plastic from 

those grown on lrECM at this level of significance. 

 

Figure 6. Gene ontology analysis of genes distinguishing cells grown in 2D and 3D culture 

conditions. 

Gene Ontology analysis of the 41 of the 96 genes shown in Figure 5 for which Gene Ontology 

annotations were available. Genes encoding proteins involved in signal transduction are 

significantly overrepresented in this set (P = 0.0201), while genes encoding proteins involved in 

the regulation of enzyme activity almost achieved statistical significance (P = 0.0509) 
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